Abstract
In this paper, direct injection-locked frequency dividers (ILFDs), which operate in the millimeter-wave (MMW) band, are analyzed. An analytically equivalent model of the direct ILFDs is developed, and important design guidelines for a large frequency locking range are obtained from it. These guidelines are: 1) maximize the quality factor of the passive load; 2) maintain low output amplitude; and 3) increase the dc overdrive voltage of the input device. A direct ILFD without varactors is designed and fabricated using a 0.13-mum bulk CMOS process to verify the developed model and design guidelines. A pMOS current source is used to restrict the output amplitude and to increase the dc overdrive voltage of the input device to achieve a large frequency locking range. The size of the input device is only 3.6 mum/0.12 mum and the measured frequency locking range is 13.6% at 70 GHz with a power consumption of 4.4 mW from a supply voltage of 1 V. In short, the proposed divider has the potential to be integrated into an MMW phase-locked loop system.

This publication has 16 references indexed in Scilit: