Formation of diluted III–V nitride thin films by N ion implantation

Abstract
Diluted III–NxV1−x alloys were successfully synthesized by nitrogen implantation into GaAs, InP, and AlyGa1−yAs. In all three cases the fundamental band-gap energy for the ion beam synthesized III–NxV1−x alloys was found to decrease with increasing N implantation dose in a manner similar to that observed in epitaxially grown GaNxAs1−x and InNxP1−x alloys. In GaNxAs1−x the highest value of x (fraction of “active” substitutional N on As sublattice) achieved was 0.006. It was observed that NAs is thermally unstable at temperatures higher than 850 °C. The highest value of x achieved in InNxP1−x was higher, 0.012, and the NP was found to be stable to at least 850 °C. In addition, the N activation efficiency in implanted InNxP1−x was at least a factor of 2 higher than that in GaNxAs1−x under similar processing conditions. AlyGa1−yNxAs1−x had not been made previously by epitaxial techniques. N implantation was successful in producing AlyGa1−yNxAs1−x alloys. Notably, the band gap of these alloys remains direct, even above the value of y (y>0.44) where the band gap of the host material is indirect.