Spiral growth of GaAs by metalorganic vapor phase epitaxy
- 11 April 1994
- journal article
- research article
- Published by AIP Publishing in Applied Physics Letters
- Vol. 64 (15) , 1959-1961
- https://doi.org/10.1063/1.111755
Abstract
Growth spirals are observed on metalorganic vapor phase epitaxy grown GaAs surfaces by atomic force microscopy. The growth mechanism is according to the classical Burton–Cabrera–Frank theory. Spirals originate from screw dislocations. Successive turns of steps are sent out by the dislocations. These steps are of monolayer height (0.28 nm) and the interstep distance is around 150 nm. The spiral steps are well developed around the screw dislocations, while the adjacent vicinal steps lack the regularity of the spiral steps. Two-dimensional nucleation islands are also observed on the vicinal steps.Keywords
This publication has 9 references indexed in Scilit:
- Surface morphology of metalorganic vapor phase epitaxy grown GaAs observed by atomic force microscopyApplied Physics Letters, 1993
- Observation of step bunching on vicinal GaAs(100) studied by scanning tunneling microscopyApplied Physics Letters, 1993
- Scanning tunneling microscopy observation of monolayer steps on GaAs(001) vicinal surfaces grown by metalorganic chemical vapor depositionApplied Physics Letters, 1993
- Equilibrium multiatomic step structure of GaAs(001) vicinal surfaces grown by metalorganic chemical vapor depositionApplied Physics Letters, 1993
- Evolution of monolayer terrace topography on (100) GaAs annealed under an arsine/hydrogen ambientApplied Physics Letters, 1993
- Extremely flat layer surfaces in liquid phase epitaxy of GaAs and AlxGa1−xAsJournal of Crystal Growth, 1988
- Reflection high-energy electron diffraction oscillations from vicinal surfaces—a new approach to surface diffusion measurementsApplied Physics Letters, 1985
- Microscopic growth mechanisms of semiconductors: Experiments and modelsJournal of Crystal Growth, 1984
- The growth of crystals and the equilibrium structure of their surfacesPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1951