Ferromagnetism in cobalt-implanted ZnO

Abstract
The magnetic and structural properties of cobalt-implanted ZnO single crystals are reported. High-quality, (110)-oriented single-crystal Sn-doped ZnO substrates were implanted at ∼350 °C with Co to yield transition metal concentrations of 3–5 at. % in the near-surface (∼2000 Å) region. After implantation, the samples were subject to a 5 min rapid thermal annealing at 700 °C. Magnetization measurements indicate ferromagnetic behavior, with hysteresis observed in the M vs H behavior at T=5 K. Coercive fields were ⩽100 Oe at this measurement temperature. Temperature-dependent magnetization measurements showed evidence for ordering temperatures of >300 K, although hysteresis in the M vs H behavior was not observed at room temperature. Four-circle x-ray diffraction results indicate the presence of (110)-oriented hexagonal phase Co in the ZnO matrix. From the 2θ full width at half maximum (FWHM) of the Co (110) peak, the nanocrystal size is estimated to be ∼3.5 nm, which is below the superparamagnetic limit at room temperature. In-plane x-ray diffraction results show that the nanocrystals are epitaxial with respect to the ZnO host matrix. The magnetic properties are consistent with the presence of Co nanocrystals, but do not preclude the possibility that a component of the magnetism is due to Co substitution on the Zn site in the ZnO matrix.