Sensitivity of Fit Indices to Model Misspecification and Model Types
Top Cited Papers
- 10 October 2007
- journal article
- Published by Taylor & Francis in Multivariate Behavioral Research
- Vol. 42 (3) , 509-529
- https://doi.org/10.1080/00273170701382864
Abstract
The search for cut-off criteria of fit indices for model fit evaluation (e.g., Hu & Bentler, 1999 Hu, L. and Bentler, P. M. 1999. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling., 6: 1–55. [Taylor & Francis Online], [Web of Science ®] [Google Scholar]) assumes that these fit indices are sensitive to model misspecification, but not to different types of models. If fit indices were sensitive to different types of models that are misspecified to the same degree, it would be very difficult to establish cut-off criteria that would be generally useful. The issue about SEM fit indices being sensitive to different types of models has not received sufficient attention, although there is some research suggesting that this might be the case (e.g., Kenny & McCoach, 2003 Kenny, D. A. and McCoach, D. B. 2003. Effect of the number of variables on measures of fit in structural equation modeling. Structural Equation Modeling., 10: 333–351. [Taylor & Francis Online], [Web of Science ®] [Google Scholar]). This study examines if fit indices are sensitive to different types of models while controlling for the severity of model misspecification. The findings show that most fit indices, including some very popular ones (e.g., RMSEA), may be sensitive to different types of models that have the same degree of specification error. The findings suggest that, for most fit indices, it would be difficult to establish cut-off criteria that would be generally useful in SEM applications.Keywords
This publication has 12 references indexed in Scilit:
- The Search for "Optimal" Cutoff Properties: Fit Index Criteria in Structural Equation ModelingThe Journal of Experimental Education, 2006
- Sensitivity of Fit Indexes to Misspecified Structural or Measurement Model Components: Rationale of Two-Index Strategy RevisitedStructural Equation Modeling: A Multidisciplinary Journal, 2005
- Fit Indices Versus Test StatisticsMultivariate Behavioral Research, 2005
- In Search of Golden Rules: Comment on Hypothesis-Testing Approaches to Setting Cutoff Values for Fit Indexes and Dangers in Overgeneralizing Hu and Bentler's (1999) FindingsStructural Equation Modeling: A Multidisciplinary Journal, 2004
- Effect of the Number of Variables on Measures of Fit in Structural Equation ModelingStructural Equation Modeling: A Multidisciplinary Journal, 2003
- Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternativesStructural Equation Modeling: A Multidisciplinary Journal, 1999
- Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexesStructural Equation Modeling: A Multidisciplinary Journal, 1999
- Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification.Psychological Methods, 1998
- Statistical significance in psychological research.Psychological Bulletin, 1968
- Sample and Population Score Matrices and Sample Correlation Matrices from an Arbitrary Population Correlation MatrixPsychometrika, 1962