Antioxidant properties of flavonol glycosides from tea

Abstract
We have determined the antioxidant activity of the major flavonols found in tea: a monoglycoside, a diglycoside and two triglycosides of kaempferol and three monoglycosides, a diglycoside and two triglycosides of quercetin. The Trolox equivalent antioxidant capacity (TEAC) and inhibition of iron/ascorbate-induced lipid peroxidation of phosphatidyl choline vesicles were measured. In the aqueous phase TEAC assay, the quercetin monoglycosides and diglycoside were approximately half as effective as quercetin aglycone. The quercetin triglycosides were much less effective than the monoglycosides and the diglycoside. The kaempferol glycosides were 32-39% less effective in the aqueous phase antioxidant assay compared to the kaempferol aglycone. Quercetin monoglycosides and diglycoside were potent inhibitors of lipid peroxidation, in contrast to the triglycoside which was much less effective. All the kaempferol glycosides were significantly less potent inhibitors of lipid peroxidation compared to the kaempferol aglycone. The compounds described herein demonstrate the antioxidant activity of the major flavonols in tea and indicate the effect of substituting a range of sugar moieties in the phenolic C ring.