Aequorea green fluorescent protein analysis by flow cytometry
Open Access
- 1 December 1995
- Vol. 21 (4) , 309-317
- https://doi.org/10.1002/cyto.990210402
Abstract
The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types (Chalfie et al.: Science 263:802–805, 1994). The longer wavelength peak (470 nm) of GFP's bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. (Nature 373:663–664, 1995) have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered at 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T-GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm.Keywords
This publication has 24 references indexed in Scilit:
- Aequorea green fluorescent proteinFEBS Letters, 1994
- Green Fluorescent Protein as a Marker for Gene ExpressionScience, 1994
- Primary structure of the Aequorea victoria green-fluorescent proteinGene, 1992
- Flow cytometric analysis of cellular endogenous fluorescence simultaneously with emission from exogenous fluorochromes, light scatter and absorptionCytometry, 1981
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Autofluorescence of viable cultured mammalian cells.Journal of Histochemistry & Cytochemistry, 1979
- Evidence for similar biochemical requirements for bioluminescence among the coelenteratesJournal of Cellular Physiology, 1973
- Energy transfer in a bioluminescent systemJournal of Cellular Physiology, 1971
- Biochemistry of the bioluminescence of colonial hydroids and other coelenteratesJournal of Cellular Physiology, 1971
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970