Generalized joint model for robot manipulator kinematic calibration and compensation

Abstract
A generalized model that goes beyond the usual assumption of “ideal” joint behavior is proposed. The “real” joint has five ancillary degrees of freedom besides the dominant motion. The resulting manipulator transformation with its greater degree of sophistication is expected to help in calibration and compensation of the various kinematic contributions to robot inaccuracy. The procedure to compute this generalized manipulator transformation is presented. The generalized model also results in manipulator differential relationships and these are discussed.

This publication has 8 references indexed in Scilit: