Back-gate bias enhanced band-to-band tunneling leakage in scaled MOSFET's

Abstract
The drain leakage current in MOSFET's in the present standard process is separated into three distinct components: the subthreshold conduction, the surface band-to-band tunneling (BTBT), and the bulk BTBT. Each of the three shows different dependencies on back-gate bias. As a result, the bulk BTBT, increasing exponentially with increasing the magnitude of back-gate reverse bias, promptly dominates the drain leakage. Additional experiment highlights the effect of the increased bulk dopant concentrations as in next-generation scaled MOSFET's on the bulk BTBT. This sets the bulk BTBT a significant constraint to the low-voltage, low-power, high-density CMOS integrated circuits employing the back-gate reverse bias. In this work, the measured drain leakage of interest is successfully reproduced by two-dimensional (2-D) device simulation.

This publication has 6 references indexed in Scilit: