Prevalence of Plasmid-Mediated Quinolone Resistance
Open Access
- 1 February 2003
- journal article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 47 (2) , 559-562
- https://doi.org/10.1128/aac.47.2.559-562.2003
Abstract
Quinolone resistance encoded by the qnr gene and mediated by plasmid pMG252 was discovered in a clinical strain of Klebsiella pneumoniae that was isolated in 1994 at the University of Alabama at Birmingham Medical Center. The gene codes for a protein that protects DNA gyrase from quinolone inhibition and that belongs to the pentapeptide repeat family of proteins. The prevalence of the gene has been investigated by using PCR with qnr -specific primers with a sample of more than 350 gram-negative strains that originated in 18 countries and 24 states in the United States and that included many strains with plasmid-mediated AmpC or extended spectrum β-lactamase enzymes. qnr was found in isolates from the University of Alabama at Birmingham only during 6 months in 1994, despite the persistence of the gene for FOX-5 β-lactamase, which is linked to qnr on pMG252. Isolates from other locations were negative for qnr . The prevalence of mcbG in the same sample was also examined. mcbG encodes another member of the pentapeptide repeat family and is involved in immunity to microcin B17, which, like quinolones, targets DNA gyrase. A single clinical isolate contained mcbG on a transmissible R plasmid. This plasmid and one carrying the complete microcin B17 operon slightly decreased sparfloxacin susceptibility but had a much less protective effect than pMG252. Plasmid-mediated quinolone resistance was thus rare in the sample examined.Keywords
This publication has 16 references indexed in Scilit:
- Mechanism of plasmid-mediated quinolone resistanceProceedings of the National Academy of Sciences, 2002
- Intrinsic Resistance of Mycobacterium smegmatis to Fluoroquinolones May Be Influenced by New Pentapeptide Protein MfpAAntimicrobial Agents and Chemotherapy, 2001
- Cloning and Biochemical Characterization of FOX-5, an AmpC-Type Plasmid-Encoded β-Lactamase from a New York City Klebsiella pneumoniae Clinical IsolateAntimicrobial Agents and Chemotherapy, 2001
- Epidemiological Investigation of Fluoroquinolone Resistance in Infections Due to Extended‐Spectrum β‐Lactamase–ProducingEscherichia coliandKlebsiella pneumoniaeClinical Infectious Diseases, 2001
- Epidemiology of Ciprofloxacin Resistance and Its Relationship to Extended-Spectrum -Lactamase Production in Klebsiella pneumoniae Isolates Causing BacteremiaClinical Infectious Diseases, 2000
- Structure and distribution of pentapeptide repeats in bacteriaProtein Science, 1998
- Antimicrobial Resistance Rates Among Aerobic Gram-Negative Bacilli Recovered from Patients in Intensive Care Units: Evaluation of a National Postmarketing Surveillance ProgramClinical Infectious Diseases, 1996
- Unusual association of a plasmid with nalidixic acid resistance in an epidemic strain of Shigella dysenteriae type 1 from AsiaCanadian Journal of Microbiology, 1991
- Rapid isoelectric focusing of plasmid-mediated beta-lactamases with Pharmacia PhastSystemAntimicrobial Agents and Chemotherapy, 1988
- PLASMID-MEDIATED RESISTANCE TO NALIDIXIC ACID IN SHIGELLA DYSENTERIAE TYPE 1The Lancet, 1987