Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase

Abstract
Arrangements of nanometer-sized particles were obtained on plane oxidized silicon substrates by direct deposition from the gas phase. The particles were attracted onto charge patterns created by contact charging. Monodisperse, singly charged indium aerosol particles with a diameter of 30 nm were used as a test case to illustrate this process. Due to the surface treatment, the deposition is highly selective. We were able to create lines of particles with widths as narrow as 100 nm and several millimeters in length. The resolution of the pattern depends mainly on the surface treatment and the tool geometry. Our approach opens the possibility of creating patterns composed of nanometer-sized particles on a flat substrate surface by the simple transfer of charge patterns, without a lithographical process.