Observation of Atomic Steps on Vicinal Si(111) Annealed in Hydrogen Gas Flow by Scanning Tunneling Microscopy

Abstract
The surface of vicinal Si(111) annealed in H2 flow was observed by equipping the chemical vapor deposition chamber with the scanning tunneling microscope. Samples were annealed at 1000°C for 10 min by passing an electric current under the H2 pressure of 7 Torr. Their surface morphology was compared with those annealed in ultrahigh vacuum (UHV) and in N2 flow at the same temperature. We found that the step motion during annealing in H2 was obviously smaller than that for annealing in UHV and N2. The multisteps formed during the annealing in UHV and N2 were not observed for H2 annealing except in the case of heating by direct current in the direction of lower to higher terraces. The mechanism of the interruption of the step motion is discussed from the viewpoint of the interaction between the surface and hydrogen.