Projection space image reconstruction using strip functions to calculate pixels more "natural" for modeling the geometric response of the SPECT collimator

Abstract
The spatially varying geometric response of the collimator-detector system in single photon emission computed tomography (SPECT) causes loss in resolution, shape distortions, reconstructed density nonuniformity, and quantitative inaccuracies. A projection space image reconstruction algorithm is used to correct these reconstruction artifacts. The projectors F use strip functions to calculate pixels more "natural" for modeling the two-dimensional (2-D) geometric response of the SPECT collimator transaxially to the axis of rotation. These projectors are defined by summing the intersection of an array of multiple strips rotated at equal angles to approximate the ideal system geometric response of the collimator. Two projection models were evaluated for modeling the system geometric response function. For one projector each strip is of equal weight, for the other projector a Gaussian weighting is used. Parallel beam and fan beam projections of a physical three-dimensional (3-D) Hoffman brain phantom and a Jaszczak cold rod phantom were used to evaluate the geometric response correction. Reconstructions were obtained by using the singular value decomposition (SVD) method and the iterative conjugate gradient algorithm to solve for q in the imaging equation FGq = p, where p is the projection measurement. The projector F included the new models for the geometric response, whereas, the backprojector G did not always model the geometric response in order to increase the computational speed. The final reconstruction was obtained by sampling the backprojection Gq at a discrete array of points. Reconstructions produced by the two proposed projectors showed improved resolution when compared against a unit-strip "natural" pixel model, the conventional image pixelized model with ray tracing to calculate the geometric response, and the filtered backprojection algorithm. When the reconstruction is displayed on fine grid points, the continuity and resolution of the image is preserved without the ring artifacts seen in the unit-strip "natural" pixel model. With present computing power, the geometric response correction using the proposed projection space reconstruction approach is not yet feasible for routine clinical use.