Temperature-Dependent Current-Voltage Characteristics of Fully Processed Ba0.7Sr0.3TiO3 Capacitors Integrated in a Silicon Device

Abstract
Temperature-dependent current-voltage characteristics of fully processed Ba0.7Sr0.3TiO3 thin film capacitors integrated in a charge-coupled device delay-line processor as bypass capacitors were studied. The thin film capacitors with a film thickness of 185 nm were formed by metal-organic decomposition processing. The leakage current measured after completion of the integration process was 1 to 2 orders of magnitude higher than that measured after capacitor patterning. The leakage current at low voltages (10 V, 500 kV/cm), the Schottky mechanism plays a dominant role in leakage current, while the Frenkel-Poole emission begins to contribute to the leakage current as the temperature is elevated.