Abstract
The influence of postdeposition annealing on the structural and optical properties of rf sputtered insulating zinc oxide films has been investigated. The as‐grown films deposited on quartz substrates were highly c‐axis oriented and in a state of stress. These films become almost stress free after a postdeposition annealing treatment at 673 K for 1 h in air. Above 673 K, a process of coalescence was observed which causes major grain growth resulting in microcrack formation and surface roughness. The refractive index shows a strong frequency dispersion below the interband absorption edge. The optical dispersion data have been fitted to (1) a single oscillator model and (2) the Pikhtin–Yas’kov model. The origin of optical dispersion at different annealing temperatures has been discussed in the light of these models. A packing density of more than 99% is estimated in the film annealed at 673 K, indicating that these films are almost void free.