Abstract
The theory for obtaining mobility and carrier concentration profiles by the Hall-effect, magnetoresistance, and capacitance-conductance methods is developed in the relaxation-time approximation. This theory is then applied to semiconductors in which a Schottky barrier is used to control a depletion region. Particular emphasis is given to field-effect transistor structures which are ideally suited for geometric magnetoresistance measurements. A unique feature of the present model is the correction for finite gate (Schottky-barrier) current, which can be very important under forward-gate-bias conditions. The ability to use forward-bias makes the near-surface region more accessible. Also, parasitic resistance effects are treated. We apply these results to GaAs conducting layers formed by direct implantation of 4×1012/cm2, 100-keV Si ions into Cr-doped GaAs.