Electromigration failure by shape change of voids in bamboo lines

Abstract
The behavior of electromigration‐induced voids in narrow, unpassivated aluminum interconnects is examined, using scanning electron microscopy. Some electromigration tests were interrupted several times in order to observe void nucleation, void growth, and finally the failure of the conductor line. It is found that voids which opened the line have a specific asymmetric shape with respect to the electron flow direction. Besides void nucleation and void growth, void shape changes can consume a major part of the lifetime of the conductor line. A first attempt to model these processes on the basis of diffusion along the void surface shows that voids with a noncircular initial shape tend to produce the fatal asymmetry due to electron wind effects, with the anisotropy of surface energy possibly playing only a minor role.