Enhanced band-gap luminescence in strain-symmetrized (Si)m/(Ge)nsuperlattices

Abstract
We report on band-gap luminescence in strain-symmetrized, (Si)m/(Ge)n superlattices grown on a step-graded, alloy buffer with a reduced dislocation density, using Sb as a surfactant. The luminescence efficiency for a (Si)9/(Ge)6 and (Si)6/(Ge)4 superlattice is strongly enhanced compared with a corresponding Si0.6 Ge0.4 alloy reference sample. The luminescence signals can be attributed to interband transitions of excitons localized at potential fluctuations in the superlattice. The observed systematic shift of the band-gap luminescence to lower energies with increasing period length compares well with results of a simple, effective-mass calculation. An increasing superlattice band gap and a reduction in luminescence intensity is observed if the Si and Ge layers are interdiffused by thermal annealing. The band gap for a (Si)6/(Ge)4 superlattice was also measured with absorption spectroscopy. The absorption coefficient, as determined by direct transmission, is in the order of 103 cm1 about 0.1 eV above the band gap.