Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy

Abstract
A scanning near-field optical microscope (SNOM) has been constructed that is capable of recording Raman spectra with a spatial resolution of ∼150 nm. The SNOM has been used to produce a combined topological and Raman map of a plastically deformed area of a silicon wafer. The variation of the frequency of the 520 cm−1 Raman band with position has been used to estimate the residual stresses associated with the deformation. The measurements demonstrate the feasibility of nondestructive, submicron stress measurement in semiconductors by near-field Raman spectroscopy.