Stopping of acoustic waves by sonic polymer-fluid composites

Abstract
A two-dimensional periodic array of air cylinders in water is known to have giant acoustic stop bands [M.S. Kushwaha and B. Djafari-Rouhani, J. Appl. Phys. 84 (1998) 4677]. It is shown in the present paper that hollow cylinders made of an elastically-soft polymer containing air inside and arranged on a square lattice in water can still give rise to large acoustic band gaps. Similar properties can also be obtained with a close-packed array of tubes containing water when arranged on a honeycomb lattice in air. The transmission coefficient of films made of such polymer-fluid composites has been calculated by finite difference time domain method. With film thickness not exceeding 75 mm, a deep sonic attenuation band was found with, in the best cases, a lower limit below 1 kHz and an upper limit above 10 kHz.