Rope-Producing Strains of Bacillus spp. from Wheat Bread and Strategy for Their Control by Lactic Acid Bacteria
Open Access
- 1 April 2003
- journal article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 69 (4) , 2321-2329
- https://doi.org/10.1128/aem.69.4.2321-2329.2003
Abstract
Two types of white wheat bread (high- and low-type loaves) were investigated for rope spoilage. Thirty of the 56 breads tested developed rope spoilage within 5 days; the high-type loaves were affected by rope spoilage more than the low-type loaves. Sixty-one Bacillus strains were isolated from ropy breads and were characterized on the basis of their phenotypic and genotypic traits. All of the isolates were identified as Bacillus subtilis by biochemical tests, but molecular assays (randomly amplified polymorphic DNA PCR assay, denaturing gradient gel electrophoresis analysis, and sequencing of the V3 region of 16S ribosomal DNA) revealed greater Bacillus species variety in ropy breads. In fact, besides strains of B. subtilis, Bacillus licheniformis , Bacillus cereus , and isolates of Bacillus clausii and Bacillus firmus were also identified. All of the ropy Bacillus isolates exhibited amylase activity, whereas only 32.4% of these isolates were able to produce ropiness in bread slices after treatment at 96°C for 10 min. Strains of lactic acid bacteria previously isolated from sourdough were first selected for antirope activity on bread slices and then used as starters for bread-making experiments. Prevention of growth of approximately 10 4 rope-producing B. subtilis G1 spores per cm 2 on bread slices for more than 15 days was observed when heat-treated cultures of Lactobacillus plantarum E5 and Leuconostoc mesenteroides A27 were added. Growth of B. subtilis G1 occurred after 7 days in breads started with Saccharomyces cerevisiae T22, L. plantarum E5, and L. mesenteroides A27.Keywords
This publication has 43 references indexed in Scilit:
- Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis.Journal of Microbiological Methods, 1999
- Random amplified polymorphic DNA and amplified ribosomal DNA spacer polymorphism : powerful methods to differentiate Streptococcus thermophilus strainsJournal of Applied Microbiology, 1998
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance fromLactobacillus sanfranciscoC57Food Microbiology, 1996
- Pseudomonas tolaasiicontrol by kasugamycin in cultivated mushrooms (Agaricus bisporus)Journal of Applied Bacteriology, 1995
- Characterization of Bacillus licheniformis with the RAPD technique (randomly amplified polymorphic DNA)Letters in Applied Microbiology, 1994
- Effects of temperature, aw and pH on the growth of Bacillus cells and spores: a response surface methodology studyInternational Journal of Food Microbiology, 1993
- Enterocin 226NWC, a bacteriocin produced by Enterococcus faecalis 226, active against Listeria monocytogenesJournal of Applied Bacteriology, 1993
- Survival and growth of Bacillus cereus in breadJournal of Applied Bacteriology, 1986
- Mathematical model for studying genetic variation in terms of restriction endonucleases.Proceedings of the National Academy of Sciences, 1979