Modeling of the ion mass effect on transient enhanced diffusion: Deviation from the “+1” model

Abstract
The influence of ion mass on transient enhanced diffusion (TED) and defect evolution after ion implantation in Si has been studied by atomistic simulation and compared with experiments. We have analyzed the TED induced by B, P, and As implants with equal range and energy: TED increases with ion mass for equal range implants, and species of different mass but equal energy cause approximately the same amount of TED. Heavier ions produce a larger redistribution of the Si atoms in the crystal, leading to a larger excess of interstitials deeper in the bulk and an excess of vacancies closer to the surface. For high-mass ions more interstitials escape recombination with vacancies, are stored in clusters, and then contribute to TED. TED can be described in terms of an effective “+n” or “plus factor” that increases with the implanted ion mass.