Isotropic-nematic transition in an external field

Abstract
We study the effects of an external field on the isotropic-nematic transition in liquid-crystalline substances. The theoretical technique employed is called the "orientationally averaged pair correlations" approximation. It takes into detailed account spatial correlations between the molecules while treating orientational order in a mean-field-like manner. The results obtained for MBBA (4methoxybenzylidene4nbutylaniline) are compared to those of the Maier-Saupe theory and the Landau-de Gennes theory. We determine the paranematic-nematic coexistence curve, the temperature-external field phase diagram, the Cotton-Mouton coefficient, the maximum supercooling temperature, critical exponents, and the relation between the transition temperature and the electric field in laser-induced isotropic-nematic transitions. These results are compared to experimental data. Their implications are discussed.