Forces in atomic force microscopy in air and water

Abstract
A new atomic force microscope, which combines a microfabricated cantilever with an optical lever detection system, now makes it possible to measure the absolute force applied by a tip on a surface. This absolute force has been measured as a function of distance (=position of the surface) in air and water over a range of 600 nm. In the absolute force versus distance curves there are two transitions from touching the surface to a total release in air caused by van der Waals interaction and surface tension. One transition is due to lifting off the surface; the other is due to lifting out of an adsorbed layer on the surface. In water there is just one transition due to lifting off the surface. There is also a transition in air and water when the totally released tip is pulled down to touch the surface as the surface and tip are brought together. Based on the force versus distance curves, we propose a procedure to set the lowest possible imaging force. It can now be as low as 109 N or less in water and 107 N in air.

This publication has 21 references indexed in Scilit: