Compensation of unmodeled puma manipulator dynamics

Abstract
Forces unmodeled by Lagrange-Euler dynamics restrict the trajectory tracking accuracy of dynamics based PUMA manipulator control laws. The ability of unmodeled force compensation techniques to eliminate those restrictions, enabling dynamics based PUMA controllers to accurately track a high speed trajectory, has been identified. Implementation of nonlinear velocity dependent friction compensation in the feedforward loop significantly improves controller efficacy. A combination of feedforward and feedback compensation techniques permits tracking accuracy sufficient for gross motion control of a PUMA manipulator without additional instrumentation. The effectiveness of proposed modern control theories can now be compared to an experimentally determined manipulator control performance baseline.

This publication has 10 references indexed in Scilit: