Beam instability in 980-nm power lasers: experiment and analysis

Abstract
A theoretical analysis of beam instability (steering), commonly observed in high power ridge waveguide laser diodes is presented. A physical model of multiple interfering lateral modes is proposed and implemented in a two-dimensional self-consistent numerical code. It is shown that the dynamic evolution of the effective waveguide and the coherent lasing of emergent multiple lateral modes of the waveguide under high injection could lead to beam steering and knees in the fiber coupled L-I characteristics. The theory of simultaneous lasing and interaction between several lateral modes is found to be consistent with the observed back-plane radiation image.<>