Abstract
Specific binding of [2-14C] malonyl-CoA to rat liver mitochondria was measured at different temperatures and after various periods of time of exposure of the mitochondria to the ligand. Incubation of mitochondria at 37 degrees C in the absence of malonyl-CoA resulted in a decrease in their ability to bind malonyl-CoA at all concentrations tested (up to 55 microM). However, incubation of mitochondria in the presence of malonyl-CoA resulted in the loss of the binding only by a low-affinity component. By contrast, there was an increase in the binding that occurred at low, physiological, concentrations of malonyl-CoA. These differences in the response of the two binding components to incubation conditions were used to obtain quantitative data about their respective saturation kinetics. Evidence was obtained that, whereas the high-affinity component approached saturation hyperbolically with respect to malonyl-CoA concentration, the low-affinity component had sigmoidal characteristics. The concentrations of malonyl-CoA required to half-saturate the two components were 2-3 microM and 30 microM for the high- and low-affinity components respectively. Evidence was also obtained for the involvement of a temperature-dependent transition, that occurred at around 25 degrees C, in the modulation of malonyl-CoA binding to the mitochondria. The possible physiological roles of the two components of malonyl-CoA binding in relation to the regulation of overt carnitine palmitoyltransferase (CPT I) activity in vivo are discussed.

This publication has 10 references indexed in Scilit: