Abstract
Small-geometry buried-channel depletion MOSFETs (BCD-MOSFETs) are characterized based on an analytical model that includes short-channel, narrow-channel, and carrier-velocity saturation effects. The drain current is calculated based on the surface electrons induced by the gate-bias voltage and the buried-channel junction FET. The narrow-channel effect is modeled not only by the additional depletion-layer charges created by a fringing-field effect in the field region, but also by the effective channel width as a function of gate-bias voltage. Surface-electron mobility is modeled as a function of the vertical and lateral electrical fields created by the gate-bias and drain voltages, while bulk-electron mobility is described as a function of the lateral electric field due to the drain voltage. Theoretical results on drain current are in good agreement with experimental results.

This publication has 20 references indexed in Scilit: