Ion irradiation damage in n-type GaAs in comparison with its electron irradiation damage

Abstract
In an effort to attain a better understanding of the nature of the defects introduced in GaAs by irradiating it with energetic light ions; electron or proton irradiated n‐type GaAs samples, cut from the same layer grown by molecular‐beam epitaxy, have been studied by deep level transient spectroscopy. By comparing the spectra, including the effects of high electric fields, and by using results for annealed samples, it is possible to determine which of the traps reported in electron irradiated GaAs, most of which are believed to be arsenic interstitial‐vacancy pairs, are present in the proton irradiated material. The traps identified in proton irradiated GaAs include most of those found in electron irradiated material, either after irradiation or after irradiation and annealing. The results indicate that two of these traps are associated with defects which are more complex than simple interstitial‐vacancy pairs. Two traps were found in proton irradiated material which have not been observed in electron irradiated GaAs. One of these is nearly as abundant as the prominent E3 center observed in electron irradiated GaAs and is probably also not a simple pair. The deep level transient spectroscopy peak for this trap is not clearly separated from that of E3 in proton irradiated GaAs. The other trap is probably associated with a particular impurity present in the MBE grown sample layers.