Experimental study of the hydrogen complexes in indium phosphide

Abstract
The structure of the H-related complexes in p-type InP and in liquid encapsulated Czochralski semi-insulating InP:Fe has been studied from the vibrational absorption of their PH stretching modes. The acceptor complexes are produced by plasma hydrogenation so that PD modes have been investigated also. The study has first been performed at 6 K on the fundamentals and on the most intense of the first overtones. The trends in the frequencies and widths of the PH modes of the H-acceptor complexes for Be, Zn, and Cd acceptors are discussed and explained qualitatively. In InP:Fe, the PH intrinsic modes are sharper than those of the acceptor complexes indicating a weaker interaction with the environment. This study has been followed by the measurement of the temperature dependence of the frequencies and of the linewidths for increasing temperatures. The frequency shifts and the broadenings of the lines are interpreted by the temperature-dependent random dephasing of the vibration of the high-frequency oscillators in the excited state. The analysis shows that the PH mode in the acceptor complexes couples to TA phonons of the InP lattice while the one in the complexes involving a vacancy couples to a two TA phonon combination. The anharmonicity of the P-H bonds is comparable to the one in phosphine. A comparison of the anharmonicity parameters derived from the overtone measurements with those derived from the hydrogen isotope effects gives evidence of the interaction between the H atom and the lattice.