Excimer laser cleaning, annealing, and ablation of β–SiC

Abstract
The effects of ArF excimer laser irradiation on β–SiC in UHV were examined for a variety of laser intensities and pulse densities. The samples were analyzed in situ with Auger and electron loss spectroscopies, and ex situ with x-ray photoelectron spectroscopy. With progressively higher laser intensities, the SiC surface was initially cleaned of carbon and oxygen surface contaminants, and the Si–LVV Auger lineshape changed from the oxide to the carbide. Still higher laser intensities then partially reordered the surface. A carbon surface layer developed, and the C-KLL lineshape transformed from carbidic to graphitic. Finally, the surface segregated into an almost pure Si layer and an underlying carbon-rich layer, followed by ablation and pitting. Bulk heating during laser exposure may enhance reordering of sputtered or implanted material.