Abstract
The understanding of the precipitation phenomena of light non dopant Impurities has been recently improved thanks to high resolution electron microscopy and microanalysis. After a one-step annealing in Czochralski silicon long coesite (SIO2) ribbons are formed between 485° and 750°C; amorphous platelets (SIOxwith x =1. 2 to 2) are formed between 650°C -1050°C. Silicon Interstitlals generated during the precipitation partly relax the strain energy associated with the volume change. These Interstltlals are also able to precipitate In various forms. After a two-step annealing both platelets and/or octahedra containing amorphous SIOxare formed. The role of carbon on oxygen precipitation Is important: It changes the nucleation parameters and gives a retardation phenomena In a two-step annealing treatment. Similar phenomena are observed in oxygen implanted silicon. The nucleation and growth process able to explain these observations is far from being well understood. The SIO2polymorphism, the Important role of SI Interstitials and the mutual attraction between oxygen and carbon are some of the ingredients which explain this complexity.