Indium-tin oxide thin films by metal-organic decomposition

Abstract
In2O3–SnO2 films were produced by thermal decomposition of a deposit which was dip coated on borosilicate glass substrates from an acetylacetone solution of indium and tin acetoacetonate. Thermal analysis showed complete pyrolysis of the organics by 400 °C. The thermal decomposition reaction generated acetylacetone gas and was found to be first order with an activation energy of 13.6 Kcal/mole. Differences in thermal decomposition between the film and bulk materials were noted. As measured by differential scanning calorimetry using a 40 °C/min temperature ramp, the glass transition temperature of the deposited oxide film was found to be ∼462 °C, and the film crystallization temperature was found to be ∼518 °C. For film fabrication, thermal decomposition of the films was performed at 500 °C in air for 1 h followed by reduction for various times at 500 °C in a reducing atmosphere. Crystalline films resulted for these conditions. A resistivity of ∼1.01 × 10−3 Ω · cm, at 8 wt. % tin oxide with a transparency of ∼95% at 400 nm, has been achieved for a 273 nm thick film.