Lateral AlxGa1−xN power rectifiers with 9.7 kV reverse breakdown voltage

Abstract
AlxGa1−xN (x=0–0.25) Schottky rectifiers were fabricated in a lateral geometry employing p+ -implanted guard rings and rectifying contact overlap onto an SiO2 passivation layer. The reverse breakdown voltage (VB) increased with the spacing between Schottky and ohmic metal contacts, reaching 9700 V for Al0.25Ga0.75N and 6350 V for GaN, respectively, for 100 μm gap spacing. Assuming lateral depletion, these values correspond to breakdown field strengths of ⩽9.67×105V cm−1, which is roughly a factor of 20 lower than the theoretical maximum in bulk GaN. The figure of merit (VB)2/RON, where RON is the on-state resistance, was in the range 94–268 MW cm−2 for all the devices.