Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots

Abstract
Carrier relaxation processes are investigated in self-assembled InAs/GaAs quantum dots using time-resolved photoluminescence spectroscopy. The quantum-dot photoluminescence rise time has been measured as functions of carrier excitation density and excitation wavelengths. The measured relaxation time is about 32 ps at low excitation density and decreases by 1 over the excitation density from about 3 W/cm2, under nonresonant laser excitation. The threshold of this density-dependent regime occurs at a slightly higher density as the excitation wavelength increases and it disappears when the photon pumping energy is below the wetting layer barrier energy. These results clearly establish the regime where Auger processes become the dominant carrier relaxation mechanism in these self-assembled quantum dots.