ONCOGENE-MEDIATED MULTISTEP TRANSFORMATION OF C3H10T1/2 CELLS

  • 1 August 1987
    • journal article
    • research article
    • Vol. 47  (15) , 4125-4129
Abstract
We have examined the response of the mouse embryonic cell line C3H10T1/2 to transfection with the activated human c-H-ras oncogene and the gag-myc oncogene from avian myelocytomatosis virus 29. C3H10T1/2 cells are not morphologically transformed following transfection with the gag-myc oncogene. A low level of focus formation is observed following transfection of the c-H-ras oncogene. When C3H10T1/2 cells are cotransformed with the ras and myc oncogenes, focus formation is increased by an average of 13 fold. In addition, C3H10T1/2 ras/myc foci have a distinct, transformed morphology which correlates with an increased potential for anchorage-independent growth. Although morphological which correlates with an incrased potential for anchorage-independent growth. Although morphological transformation in this system is largely a function of ras oncogene expression, our studies demonstrate that it is potentiated by the presence of a functional gag-myc protein. Oncogene-mediated multistep transformation, which was first described in primary embryo cultures, is not a general property of established cell lines. The C3H10T1/2 cell line is an exception and provides a model system in which partially transformed phenotypes, in a progression toward malignant transformation, can be isolated and studied.