Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies

Abstract
In this paper we present an evaluation of the pulsed laser as a technique for single events effects (SEE) testing. We explore in detail the important optical effects, such as laser beam propagation, surface reflection, and linear and nonlinear absorption, which determine the nature of laser-generated charge tracks in semiconductor materials. While there are differences in the structure of laser- and ion-generated charge tracks, we show that in many cases the pulsed laser remains an invaluable tool for SEE testing. Indeed, for several SEE applications, we show that the pulsed laser method represents a more practical approach than conventional accelerator-based methods.