Ideal rectangular cross-section Si-Fin channel double-gate MOSFETs fabricated using orientation-dependent wet etching

Abstract
Ultranarrow and ideal rectangular cross section silicon(Si)-Fin channel double-gate MOSFETs (FXMOSFETs) have successfully been fabricated for the first time using [110]-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. The transconductance (g/sub m/) normalized by 2×(Fin height) is found to be as high as 700 μS/μm at V/sub d/=1 V in the fabricated 13-nm-thick and 82-nm-high Si- Fin channel double-gate MOSFET with a 105-nm gate length and a 2.2-nm gate oxide. The almost-ideal S-slope of 64 mV/decade is demonstrated in a 145-nm gate length device. These excellent results show that the Si-Fin channel with smooth [111]-oriented sidewalls is suitable to realize a high-performance FXMOSFET. The short-channel effects (SCEs) are effectively suppressed by reducing the Si-Fin thickness to 23 nm or less.

This publication has 8 references indexed in Scilit: