Si resonant interband tunnel diodes grown by low-temperature molecular-beam epitaxy

Abstract
Si resonant interband tunnel diodes that demonstrate negative differential resistance at room temperature, with peak-to-valley current ratios greater than 2, are presented. The structures were grown using low-temperature (320 °C) molecular-beam epitaxy followed by a postgrowth anneal. After a 650 °C, 1 min rapid thermal anneal, the average peak-to-valley current ratio was 2.05 for a set of seven adjacent diodes. The atomic distribution profiles of the as-grown and annealed structures were obtained by secondary ion mass spectrometry. Based on these measurements, the band structure was modeled and current–voltage trends were predicted. These diodes are compatible with transistor integration.