Effects of rapid quenching on the impurity site location in Zn-diffused InP

Abstract
The lattice locations of Zn atoms in heavily Zn-doped InP single crystal have been investigated by ion channeling techniques. The InP samples were rapidly quenched in diffusion pump oil after high-temperature Zn diffusion. Ion channeling experiments performed along various major crystal axes suggest that a large fraction (20%–30%) of the Zn atoms are in the tetrahedral interstitial position in the InP lattice. It has been found that although the maximum hole concentration is not significantly affected by the cooling rate, there is a substantial increase in the incorporation of Zn on substitutional and tetrahedral interstitial lattice locations in the rapidly cooled samples as compared to the slowly cooled samples. The consequences of these results for understanding the mechanisms leading to the saturation of the free-hole concentration in compound semiconductors are discussed.