Abstract
The temperature dependence of MOSFET degradation due to hot-electron injection has been studied. The slower degradation rate at elevated temperature at fixed stressing bias follows the substrate current level which is reduced mainly by lower localized electric field rather than lower ionization coefficient (both are caused by enhanced phonon scattering). The actual degradation rate at the constant substrate current level is slightly higher at elevated temperatures, indicating an enhanced interface-state generation mechanism. This temperature dependence provides a simple relationship between device degradation and substrate current at various temperatures.

This publication has 7 references indexed in Scilit: