Abstract
A mechanism explaining suppression of dislocation formation in doped semiconductors is proposed. The mechanism is based on the recently introduced concept of amphoteric native defects. It is shown that supersaturation of vacancylike defects depends on the Fermi energy and thus also on the doping level. The calculated dependence of supersaturation on the doping level quantitatively accounts for experimentally observed trends in dislocation suppression in GaAs and InP.