High-speed silicon electrooptic Modulator design

Abstract
An electrically driven Mach-Zehnder waveguide modulator based on high-index contrast silicon split-ridge waveguide technology and electronic carrier injection is proposed. The excellent optical and carrier confinement possible in high-index contrast waveguide devices, together with good thermal heat sinking and forward biased operation, enables high-speed modulation with small signal modulation bandwidths beyond 20 GHz, a V/sub /spl pi// times length figure of merit of V/sub /spl pi//L=0.5 V/spl middot/cm and an insertion loss of about 4 dB. The modulator can be fabricated in a complementary metal-oxide-semiconductor compatible way.