MOSFET simulation with quantum effects and nonlocal mobility model

Abstract
We present a state-of-the-art two-dimensional (2-D) device simulator suitable for highly doped n-MOSFETs. Quantization effects in the inversion channel are accounted for by a self-consistent solution of the Poisson, current-continuity and Schrodinger equations. The electron charge is given by a density of electrons in the bounded levels plus a density of classically-distributed carriers. Consequently, different mobility models are used. For the former, we adopted a nonlocal, newly-developed mobility model, thus overcoming the deficiency of currently-used mobility models in the high-doping limit. We instead retained a standard local model for the classical regime. Results of the simulations are in good agreement with the experiments.

This publication has 12 references indexed in Scilit: