1/f noise in thin oxide p-channel metal–nitride–oxide–silicon transistors

Abstract
The 1/f noise behavior of p‐channel metal–nitride–oxide–silicon transistors is presented. Devices with different oxide thicknesses, geometries and different technological treatments were used for this study. It is shown that the noise behavior can be well explained quantitatively with the number fluctuation model developed for MOS transistors. The close correlation between the increase of the noise and of the interface state density after different levels of degradation indeed indicates that the exchange of carriers between the channel and the interface traps lies at the origin of the 1/f noise. The observed degradation in MNOS devices is consistent with a diffusion controlled model for the creation of surface traps but is found to be a saturating effect. The predictions of the mobility fluctuation model are not confirmed in our experiments.