Explosive crystallization starting from an amorphous-silicon surface region during long pulsed-laser irradiation

Abstract
A newly developed method of backside time-resolved reflectivity measurement is useful for probing the interface between solid and transient liquid Si. Measurements indicate that explosive crystallization starts very near the Si surface from a highly undercooled liquid Si layer thinner than 3 nm for laser irradiation with long pulses ranging from 65 to 200 ns. During the laser irradiation, surface melt-in continues into fine-grained polycrystalline Si produced by explosive crystallization, followed by solidification of the surface-liquid layer.