27-GHz bandwidth high-speed monolithic integrated optoelectronic photoreceiver consisting of a waveguide fed photodiode and an InAlAs/InGaAs-HFET traveling wave amplifier

Abstract
A monolithic integrated photoreceiver for 1.55-μm wavelength has been designed for operation in a 20-Gb/s synchronous digital hierarchy system (SDH/SONET), based on a new integration concept. The optoelectronic integrated circuit (OEIC) receiver combines a waveguide-integrated PIN-photodiode and a traveling wave amplifier in coplanar waveguide layout with four InAlAs/InGaAs/InP-HFETs (0.7-μm gate length). The receiver demonstrates a bandwidth of 27 GHz with a low frequency transimpedance of 40 dBΩ. This is, to our knowledge, the highest bandwidth ever reported for a monolithic integrated photoreceiver on InP. Furthermore, a receiver sensitivity of -12 dBm in the fiber (20 Gb/s, BER=10-9) and an overall optical input dynamic range of 27 dB is achieved. Optical time domain multiplex (TDM) system experiments of the receiver packaged in a module show an excellently shaped eye pattern for 20 Gb/s and an overall sensitivity of -30.5 dBm (BER=10-9) [including erbium doped fiber amplifiers (EDFA)