Kinetics of compositional disordering of AlGaAs/GaAs quantum wells induced by low-temperature grown GaAs

Abstract
Compositional disordering of GaAs/AlGaAs quantum wells due to the presence of low-temperature grown GaAs (by molecular beam epitaxy) was studied. Ga vacancy enhanced interdiffusion was found to be the mechanism underlying the observed intermixing. Diffusion equations were solved numerically to obtain the band profile after intermixing. The transition energies in the quantum wells under various annealing conditions were solved and agree very well with the observed photoluminescence emission peaks. The diffusivity of Ga vacancies and that of induced Al-Ga interdiffusion were obtained. The vacancy induced interdiffusion diffusivity was found to have an activation energy of 4.08 eV, which is smaller than the activation energy of interdiffusion diffusivity of normal temperature grown GaAs/AlGaAs heterostructures. This is a clear indication of enhanced interdiffusion due to the presence of low-temperature grown GaAs.