High-temperature operating 1.3-μm quantum-dot lasers for telecommunication applications

Abstract
High-performance 1.3-μm-emitting quantum-dot lasers were fabricated by self-organized growth of InAs dots embedded in GaInAs quantum wells. The influence of the number of quantum-dot layers on the device performance was investigated. Best device results were achieved with six-dot layers. From the length dependence; a maximum ground state gain of 17 cm/sup -1/ for six dot layers could be determined. Ridge waveguide lasers with a cavity length of 400 μm and high-reflection coatings show threshold currents of 6 mA and output powers of more than 5 mV. Unmounted devices can be operated in continuous wave mode up to 85/spl deg/C. A maximum operating temperature of 160/spl deg/C was achieved in pulsed operation for an uncoated 2.5-mm-long ridge waveguide laser.