Optically induced bistability in the mobility of a two-dimensional electron gas coupled to a layer of quantum dots

Abstract
We report a bistability in the resistance of a GaAs/AlGaAs modulation doped field effect transistor in which a layer of InAs self-organized quantum dots has been grown near the electron channel. Brief optical illumination causes a large, persistent drop in the two-dimensional electron gas (2DEG) resistance which can be recovered by allowing a current to flow through the Schottky gate. We demonstrate that illumination reduces the number of electrons trapped in the quantum dots, lowering their potential and thereby enhancing the 2DEG mobility. This bistability could be the basis of an optical memory or sensitive phototransistor.